0

I noticed this trend in Wolfram Alpha for that $x-y$ divides $x^3-y^3, x^5-y^5, x^7-y^7$ so I was wondring if it is true for all $ k \in \mathbb{N}$?

1 Answers1

3

In general, $x^{2k+1}-y^{2k+1} = (x-y)(x^{2k} + x^{2k-1} y + \dots + x y^{2k-1} + y^{2k})$.

$$ x(x^{2k} + x^{2k-1} y + \dots + x y^{2k-1} + y^{2k}) = x^{2k+1} + x^{2k} y + \dots + x^2 y^{2k-1} + x y^{2k} $$

$$ y(x^{2k} + x^{2k-1} y + \dots + x y^{2k-1} + y^{2k}) = \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x^{2k}y + x^{2k-1} y^2 + \dots + x y^{2k} + y^{2k+1}$$

so subtracting the two lines proves the desired result.

Nitin
  • 2,948