Proof that if a matrix has no eigenvalues, it'll not be invertible:
$$ \det(A-\lambda I) = 0 \Rightarrow \begin{pmatrix} a_{1,1}-\lambda & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2}-\lambda & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n}-\lambda \end{pmatrix} $$
If all $\lambda=0$, we would get that our $\det(A) = 0$, hence, it would not be invertible.
Is this proof correct?!