From this answer one has the result
$$\sum_{n=-\infty}^{\infty} \frac1{(z+n)^2+a^2} = \frac{\pi}{2 a} \frac{\sinh{2 \pi a}}{\sin^2{\pi z}+\sinh^2{\pi a}}$$
In your case, we rewrite the expression as
$$\frac{y}{4 \pi L^2} \sum_{n=-\infty}^{\infty} \left [\frac1{\left (n+\frac{x-x_0}{2 L}\right )^2+\frac{y^2}{4 L^2}} - \frac1{\left (n+\frac{x+x_0}{2 L}\right )^2+\frac{y^2}{4 L^2}} \right ]$$
which, from the above result may be simplified to the form
$$\frac{1}{4 L} \left [\frac{\sinh{\left (\frac{\pi y}{L} \right )}}{\sin^2{\left (\frac{\pi (x-x_0)}{2 L} \right )}+\sinh^2{\left (\frac{\pi y}{2 L} \right )}} - \frac{\sinh{\left (\frac{\pi y}{L} \right )}}{\sin^2{\left (\frac{\pi (x+x_0)}{2 L} \right )}+\sinh^2{\left (\frac{\pi y}{2 L} \right )}}\right ] $$
This can be simplified in many different ways, depending on what you want from the final expression.