$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$$\bbox[10px,#ffe,border:1px dotted navy]{\ds{%
\mbox{Besides your 'differential equation technique', you can perform a direct evaluation as follows:}}}
$$
\begin{align}
\sum_{n = 1}^{\infty}{x^{2n} \over \pars{2n}!} & =
\sum_{n = 2}^{\infty}{x^{n} \over n!}\,{1 + \pars{-1}^{n} \over 2} =
{1 \over 2}\pars{\sum_{n = 0}^{\infty}{x^{n} \over n!} - 1 - x} +
{1 \over 2}\pars{\sum_{n = 0}^{\infty}{\pars{-x}^{n} \over n!} - 1 + x}
\\[5mm] & =
-1 + {1 \over 2}\,\expo{x} + {1 \over 2}\,\expo{-x} =\
\bbox[#ffe,10px,border:1px dotted navy]{\ds{\cosh\pars{x} - 1}}
\end{align}