1

Solve this system of equations in ℝ (k ∈ [0,1]):

$\ k-x^2=\ y$

$\ k-y^2=\ z$

$\ k-z^2=\ u$

$\ k-u^2=\ x$

LeoBern
  • 11

1 Answers1

1

HINT:

  1. When $\text{k}-x^2=y$ and $\text{k}-u^2=x$: $$\text{k}-\left(\text{k}-u^2\right)^2=y$$
  2. When $\text{k}-z^2=u$ and $\text{k}-y^2=z$: $$\text{k}-\left(\text{k}-y^2\right)^2=u$$

So:

$$\text{k}-\left(\text{k}-\left(\text{k}-\left(\text{k}-u^2\right)^2\right)^2\right)^2=u$$

Jan Eerland
  • 28,671
  • It woul lead to the equation with u to the power more than ten. – LeoBern Oct 22 '16 at 19:43
  • @LeoBern For example, when $k=0$, then we get: $-u^{16}=u$. – Jan Eerland Oct 22 '16 at 19:57
  • @JanEerland: Interestingly, Ramanujan considered the related equation$$\text{k}+\left(\text{k}+\left(\text{k}+\left(\text{k}+x^2\right)^2\right)^2\right)^2=x$$ and solved it in radicals. Kindly see this post. – Tito Piezas III Oct 23 '16 at 13:30
  • @LeoBern: Of course, as one has to raise to the $2$nd power four times. Thus you need to solve a factorable $16$-deg equation. Fortunately, Ramanujan did related work. See the link I posted above. – Tito Piezas III Oct 23 '16 at 13:33