1

Let $n_1, n_2$ integers. Show that if $$n_1|2^{n_2}-1 \, \, n_2|2^{n_1}-1$$ then $n_1=n_2=1$.

I want a little hint for this problem. I tried to use the proof of

There is no $n>1$ such that $n$ divides $2^n-1$

but I got nothing.

Did
  • 279,727
EQJ
  • 4,369

1 Answers1

1

Assume that both $n_1,n_2$ are odd and $>1$. Let $p_1$ be the smallest prime divisor of $n_1$, $p_2$ the smallest prime divisor of $n_2$. Then $p_1$ divides both $2^{n_2}-1$ and $2^{p_1-1}-1$, hence $p_1$ divides $2^{\gcd(n_2,p_1-1)}-1$. Similarly, $p_2$ divides $2^{\gcd(n_1,p_2-1)}-1$. If $p_2\leq p_1$, $p_2\mid 2^{\gcd(n_1,p_2-1)}-1$ implies $p_2=1$, contradiction. Similarly, if $p_1\leq p_2$, $p_1\mid 2^{\gcd(n_2,p_1-1)}-1$ implies $p_1=1$, contradiction.

This is exactly the proof you probably mentioned, with a minor twist.

Jack D'Aurizio
  • 353,855