Proving $294!<100^{300}<295!$
$\bf{My\; Try::}$ I have used Stirling Approximation $$n!\approx \left(\frac{n}{e}\right)^n\cdot \sqrt{2\pi n}$$
Put $n=294$ and $n=295$,
$$294!\approx \left(\frac{294}{e}\right)^{294}\cdot \sqrt{2\pi \cdot 294}$$
and $$295!\approx \left(\frac{295}{e}\right)^{295}\cdot \sqrt{2\pi \cdot 295}$$
Now i did not understand hoe can i solve it, Help required, Thanks