Inspired by @IV_’s answer, here is a Lagrange reversion result:
$$y\sinh(y)=x\implies y=x+\sum_{n=1}^\infty\frac1{ n!}\frac{d^{n-1}\left(\frac{xe^{-x}}2-\frac{xe^x}2+x\right)^n}{dx^{n-1}}$$
roughly shown here. The next step is to use the trinomial theorem:
$$\frac1{n!}\frac{d^{n-1}\left(\frac{xe^{-x}}2-\frac{xe^x}2+x\right)^n}{dx^{n-1}}=\sum_{m=0}^n\sum_{k=0}^m\frac{(-1)^k\frac{d^{n-1}}{dx^{n-1}}e^{(2k-m)x}x^n}{(n-m)!(m-k)!k!2^m}$$
Here appears a Laguerre function Rodrigues representation here in $(2)$ to $(5)$, but it is more flexible to use the general Leibniz rule with the confluent hypergeometric function $\,_1\text F_1(a;b;z)$:
$$\frac{d^{n-1}}{dx^{n-1}}e^{(2k-m)x}x^n=\sum_{j=0}^{n-1}\binom{n-1}j \frac{d^{n-1-j}}{dx^{n-1-j}}x^n\frac {d^j}{dx^j}e^{(2k-m)x}=xn!\,_1\text F_1(n+1;2;(2k-m)x)$$
Although it converges slowly, we get:
$$\boxed{y\sinh(y)=x\implies y=\pm x\pm x\sum_{n=1}^\infty\sum_{m=0}^n\sum_{k=0}^m\frac{n!(-1)^k\,_1\text F_1(n+1,2,(2k-m)x)}{(n-m)!(m-k)!k!2^m}}$$
shown here in the substitution section. Additionally, $0\le m\le k\le \infty$ or $0\le k\le m\le \infty$ and if all bounds are $\infty$, then all sums are interchangeable.
Approximate graph of inverse for small $n$:

Is there any way to simplify the boxed result or find other solutions using a series?