how to find the limit of the following:
$\lim\limits_{x\to0} x^p (\log(1/x))^m$
where
(1) $0<p<1$ and $m>0$
(2) $p>1$ and $m>0$
explanation: In case (1)and (2) both, it is of $(\frac{0}{0})$ form, hence by using L-Hospital Rule:
Let $T = \lim\limits_{x\to0}\frac {x^p} {(\log(1/x))^{-m}}$
$~~~~~~~~~ = \lim\limits_{x\to0}\frac {px^p}{m (\log(1/x))^{-(m+1)}}$
$~~~~~~~~~=~$T$~\lim\limits_{x\to0}\frac {p} {m}(\log(1/x))$
$=>T(1-\lim\limits_{x\to0}\frac {p} {m}(\log(1/x)))=0$
from this $~T$ should be $0.$
Whether the given solution is correct or is there any other method to solve this problem, please help me.