Evaluate the limit for $0 < a < b$, $$\lim_{n \to \infty} \left\{ \int_{0}^{1} [bx + a(1 - x) ]^{\frac1n} dx \right\}^n$$
Note that the exponent $~1/n~$ is inside the integration on the entire integrand $~a + (b-a)x,~$ and the exponent $n$ is outside on the definite integral.
One solution is available given this particular definition of the logarithm function as a limit: $$\log x = \lim_{h \to 0} \frac{x^h - 1}h \quad \text{, or equivalently} \quad\log x = \lim_{n \to \infty} n(x^{\frac1n} - 1)$$
This solution is an algebraic maneuver that involves terms like $~e^{b\log b},~$ where one first obtains $~\log b~$ as a limit, and then only after another limit can one arrive at $~b^b~$ eventually.
My question is this: how does one evaluate the limit more directly without this seemingly redundant path of log on the exponent?
In short, there's an approach at hand that is unsatisfactory, and I believe there are better ones.
As a reference, below is the detailed steps of the circuitous solution outlined above:
The definite integral evaluates to $$\frac1{b - a} \frac1{ 1 + \frac1n } \left[ a + (b-a)x \right]^{ 1 + \frac1n } \Bigg|_{0}^{1} = \frac{ b^{1 + \frac1n} - a^{1 + \frac1n} }{b - a} \frac1{ 1 + \frac1n }$$ Thus the whole expression becomes $$ \begin{align} &\lim_{n \to \infty} \left\{ \frac{ b^{1 + \frac1n} - a^{1 + \frac1n} }{b - a} \frac1{ 1 + \frac1n } \right\}^{n} \\ &= \frac1e \lim_{n \to \infty} \left\{ 1 + \frac{ b^{1 + \frac1n} - a^{1 + \frac1n} - (b - a) }{b - a} \right\}^{n} \\ &= \frac1e \lim_{n \to \infty} \left\{ 1 + \frac{ n \left( b^{1 + \frac1n} - b \right) - n \left( a^{1 + \frac1n} - a \right) }{ n (b - a) } \right\}^{n} \end{align} $$ all the limits exist so I'm just gonna keep writing in this non-rigorous way $$ \begin{align} &= \frac1e \lim_{n \to \infty} \left\{ 1 + \frac1n \frac{ b \log b - a \log a }{ b - a } \right\}^{n} \\ &= \frac1e \cdot e^{ \frac1{b-a} \left( b \log b - a \log a \right)} \\ &= \frac1e \left( \frac{ b^b }{ a^a } \right)^{ \frac1{b-a}} \end{align}$$