Show that for any strictly positive integer $n \in \mathbb{Z}^{+}$ , one has $\gcd( n! + 1 , (n+1)! + 1 ) = 1$
The hint given to me was : Recall that the greatest commond divisor of any two integers $a, b \in \mathbb{Z}$ is defined as the unique non-negative integer $gcd(a, b) \in \mathbb{Z}^{+}$ such that $\{ ar + bs \in \mathbb{Z} | r, s \in \mathbb{Z} \} = \gcd(a, b) · \mathbb{Z}$
I don't understand the equation $\{ ar + bs \in \mathbb{Z} | r, s \in \mathbb{Z} \} = \gcd(a, b) · \mathbb{Z}$.
help?