How can I prove that for all $n\in\mathbf{N}$ that $6 | n^5 + 5n$?
I tested for $n = 2$ and got $6 | 32 + 10 = 42$.
How can I prove that for all $n\in\mathbf{N}$ that $6 | n^5 + 5n$?
I tested for $n = 2$ and got $6 | 32 + 10 = 42$.
$$n^5+5n=6n+(n-1)n(n+1)(n^2+1)$$
Now $6=3!$ divides the product of any three consecutive integers(why?)
1) Show that $2|n^5+5n$.
2) Show that $3|n^5 + 5n$.
If we can show both, separately, it has to follow that $6=2*3|n^5 + 5n$.
1)$n^5 + 5n = n(n^4+5)$. If $n$ is even so is $n(n^4+5)$. If $n$ is odd then $n^5$ is odd and $n^5 + 5$ is even and $n(n^4+5)$ is even.
So $n^5 + 5n$ is even.
2) $n = 3m + i$ for some $m$ and $i = 1, 0, $ or $-1$.
a) $i = 0; n = 3m$ then $3|n$ and $3|n(n^4 + 5)$.
b) $i = \pm 1$ then
$n^4 + 5$ = $(3m \pm 1)^4 + 5$
$ = (3^4m^4 \pm 4*3^3m^3 + 6*3^2m^2 \pm 4*3m + 1) + 5$
$= 3^4m^4 \pm 4*3^3m^3 + 6*3^2m^2 \pm 4*3m + 6$
$= 3(3^3m^4 \pm 4*3^3m^3 + 6*3m^2 \pm 4*m + 2)$
So $3|n^4 + 5$ and $3|n^5 + 5n$.
====
So both $2|n^5+5n$ and $3|n^5 + 5n$ so $6|n^5+5n$.
Work modulo 6:
$$\begin{align*} \text{if $n \equiv 0 \mod 6$,}&\qquad n^5+5n\equiv 0,\\ \text{if $n \equiv 1 \mod 6$,}&\qquad n^5+5n\equiv 1+5=6\equiv0,\\ \text{if $n \equiv 2 \mod 6$,}&\qquad n^5+5n\equiv 32+10\equiv2+4\equiv0,\\ \text{if $n \equiv 3 \mod 6$,}&\qquad n^5+5n\equiv 3+3\equiv0,\\ \text{if $n \equiv 4 \mod 6$,}&\qquad n^5+5n\equiv 4+2\equiv0,\\ \text{if $n \equiv 5 \mod 6$,}&\qquad n^5+5n\equiv 5+1\equiv0.\\ \end{align*} $$
So $n^5+5n$ is always a multiple of 6.
Use modular arithmetic and solve for the finite number of cases $n \equiv 0, 1, 2, 3, 4, 5 \pmod{6}$.
For example, $4 \cdot 4 = 16 \equiv 4 \pmod{6}$, so that $4^5 \equiv 4 \pmod{6}$, and $n^5 + 5n \equiv 4 + 20 \pmod{6} \equiv 24 \pmod{6} \equiv 0 \pmod{6}$.
The five other cases are similar.
This is also true for $n^3 + 5n$, $n^5 + 5n$, $n^7 + 5n$, $n^{11} + 5n$ and so on. The reason is Fermat's Little Theorem.
Note that it does not work, however, for $n^2 + 5n$. Fermat's little theorem only applies to $n^p + 5n$ when $(p, n) = 1$, i.e., when $p$ and $n$ are coprime. Thus, for $p = 2, 3, 5$, we have to check the single respective case $n = 2, 3, 5$ by hand. However, for all other primes, it holds.
– Oct 20 '16 at 14:25