Calculate the characteristic polynomial of $\begin{bmatrix}0 & 0 & 0 & ... & 0 &a_0 \\-1 & 0 & 0 & ... & 0 & a_1 \\ 0 & -1 & 0 & ... & 0 & a_2 \\ ... & ... & ... & ... & ... & ...\\ 0 & 0 & 0 & ... & -1 & a_{n-1}\end{bmatrix}$
So we need to calculate the determinant of $\begin{bmatrix}-\lambda & 0 & 0 & ... & 0 &a_0 \\-1 & -\lambda & 0 & ... & 0 & a_1 \\ 0 & -1 & -\lambda & ... & 0 & a_2 \\ ... & ... & ... & ... & ... & ...\\ 0 & 0 & 0 & ... & -1 & a_{n-1}-\lambda\end{bmatrix}$
I solved $det(\begin{bmatrix}-\lambda & a_0 \\ -1 & a_1-\lambda\end{bmatrix})=(-\lambda (a_1 - \lambda))+a_0=\lambda^2-a_1\lambda+a_0$.
This leads me to believe that the determinant I am trying to find is: $\lambda^n-a_{n-1}\lambda^{n-1}+a_{n-2}\lambda^{n-2}-...+(-1)^na_0$, but I am struggling to prove this theory.