I need to describe all $2$-generated subgroups of the group of rational numbers under addition, $\mathbb{Q}$ (i.e. all subgroups of $\mathbb{Q}$ that are generated by $2$ elements). I have come up with a proof, and would like somebody to please take a look at it, tell me if it's correct, and if not, what I need to do in order to make it so.
To start my proof, I began with the following proposition:
Proposition 1: All finitely generated subgroups of $\mathbb{Q}$ are cyclic.
Proof: Suppose that $H$ is a finitely generated subgroup of $\mathbb{Q}$, say $ \displaystyle H = \left\langle \frac{n_{1}}{m_{1}}, \cdots , \frac{n_{r}}{m_{r}} \right\rangle $ where $n_{i}, m_{i} \in \mathbb{Z}$ $\forall i \in \mathbb{N}$. Define $m = m_{1}m_{2}\cdots m_{r}$.
Then, $\forall i$ such that $1 \leq i \leq r$, we have that $\displaystyle \frac{n_{i}}{m_{i}}=n_{i} \cdot (m_{1}m_{2} \cdots m_{i-1}m_{i+1}\cdots m_{r}) \cdot \frac{1}{m} \in \left \langle \frac{1}{m} \right \rangle$, as $\displaystyle \left \langle \frac{1}{m} \right \rangle$ contains all multiples of $\displaystyle n \cdot \frac{1}{m}$, $n \in \mathbb{Z}$, and clearly $n_{i} \cdot (m_{1}m_{2}\cdots m_{i-1}m_{i+1}\cdots m_{r}) \in \mathbb{Z}$.
Since $\displaystyle \left \langle \frac{n_{1}}{m_{1}}, \cdots \frac{n_{r}}{m_{r}}\right \rangle$ is the smallest subgroup of $\mathbb{Q}$ containing all of the $\displaystyle \frac{n_{i}}{m_{i}}$, by definition, we have that $\displaystyle H = \left \langle \frac{n_{1}}{m_{1}} \cdots \frac{n_{r}}{m_{r}}\right \rangle \leqslant \left \langle \frac{1}{m} \right \rangle$, and since every subgroup of a cyclic group is cyclic, $H$ must be cyclic.
So, we have that all finitely-generated subgroups of $\mathbb{Q}$ must be cyclic.
From this proposition, I have the following conclusion as to the nature of all $2$-generated subgroups of $\mathbb{Q}$:
The $2$-generated subgroups of $\mathbb{Q}$ are merely subgroups of the form $\displaystyle \left \langle \frac{n}{m}\right \rangle = \left \langle \frac{n}{m},\frac{n}{m} \right \rangle$, where the two generating elements are not distinct, and $\gcd(n,m)=1$.
Could somebody please tell me if this is correct? Especially the last part - somehow it doesn't seem like enough. And if it's not correct, what do I do to make it correct?
Thank you :)