In the same spirit as Aforest's answer $$A_n=\binom{a n}{n}^{\frac{1}{n}}\implies \log(A_n)=\frac 1 n \left(\log ((a n)!)-\log (((a-1) n)!)-\log(n!) \right)$$ Now, apply Stirling approximation as Aforest did that is to say $$\log(m!)\approx m (\log (m)-1)+\frac{1}{2} \left(\log (2 \pi )+\log
\left(m\right)\right)$$
Then use Taylor series for infinitely large values of $n$ to get, after a few simplifications, $$\log(A_n)\approx a \log \left(\frac{a}{a-1}\right)+\log(a-1)+\frac{\log \left(\frac{a}{2 \pi (a-1) n}\right)}{2 n}$$ which gives the limit and also how it is approached.
This seems to work quite well even for small values of $n$ as shown in the following table for a few values of $a$
$$\left(
\begin{array}{cccc}
a & n & A_n\text{(approx)} & A_n\text{(exact)} \\
2 & 10 & 3.36669 & 3.36248 \\
2 & 15 & 3.51791 & 3.51596 \\
2 & 20 & 3.60666 & 3.60554 \\
\cdots \\
3 & 10 & 5.60015 & 5.59471 \\
3 & 15 & 5.87983 & 5.87729 \\
3 & 20 & 6.04263 & 6.04116 \\
\cdots \\
4 & 10 & 7.82013 & 7.81308 \\
4 & 15 & 8.22682 & 8.22352 \\
4 & 20 & 8.4629 & 8.46099 \\
\cdots \\
5 & 10 & 10.0357 & 10.0269 \\
5 & 15 & 10.5689 & 10.5648 \\
5 & 20 & 10.8781 & 10.8757 \\
\cdots \\
6 & 10 & 12.2492 & 12.2387 \\
6 & 15 & 12.9089 & 12.9039 \\
6 & 20 & 13.2910 & 13.2881
\end{array}
\right)$$
Very interesting problem, indeed !