Question Statement:-
Evaluate the determinant: $$\begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \\ \end{vmatrix}$$
My Solution:-
$$ \begin{align} \begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \\ \end{vmatrix} &= (1^2\times2^2\times3^2)\begin{vmatrix} 1 & 1 & 1 \\ 2^2 & \left(\dfrac{3}{2}\right)^2 & \left(\dfrac{4}{3}\right)^2 \\ 3^2 & \left(\dfrac{4}{2}\right)^2 & \left(\dfrac{5}{3}\right)^2 \\ \end{vmatrix}&\left[\begin{array}{11}C_1\rightarrow\dfrac{C_1}{1} \\ C_2\rightarrow\dfrac{C_2}{2^2}\\ C_3\rightarrow\dfrac{C_3}{3^2}\end{array}\right]\\ &= (1^2\times2^2\times3^2)\begin{vmatrix} 1 & 0 & 0 \\ 2^2 & \left(\dfrac{3}{2}\right)^2-2^2 & \left(\dfrac{4}{3}\right)^2-2^2 \\ 3^2 & 2^2-3^2 & \left(\dfrac{5}{3}\right)^2-3^2 \\ \end{vmatrix} &\left[\begin{array}{11}C_2\rightarrow C_2-C_1 \\ C_3\rightarrow C_3-C_1\end{array}\right]\\ &= (1^2\times2^2\times3^2) \begin{vmatrix} 1 & 0 & 0 \\ 2^2 & 2^2-\left(\dfrac{3}{2}\right)^2 & 2^2-\left(\dfrac{4}{3}\right)^2 \\ 3^2 & 3^2-2^2 & 3^2-\left(\dfrac{5}{3}\right)^2 \\ \end{vmatrix}\\ &=(1^2\times2^2\times3^2) \begin{vmatrix} 1 & 0 & 0 \\ 2^2 & \dfrac{7}{4} & \dfrac{20}{9} \\ 3^2 & 5 & \dfrac{56}{9} \\ \end{vmatrix}\\ &=(1^2\times2^2) \begin{vmatrix} 1 & 0 & 0 \\ 2^2 & \dfrac{7}{4} & 20 \\ 3^2 & 5 & 56 \\ \end{vmatrix}\\ &=4\times(-2)\\ &=-8 \end{align} $$
As you can see, my solution is a not a very promising one. If I encounter such questions again, so would you please suggest a better method which doesn't include this ridiculous amount of calculations.
But if you directly evaluate it (without any manipulation), it is a fairly straightforward computation
– Hugh Entwistle Oct 15 '16 at 09:03In other words have your matrix entirely in terms of $x$
– Hugh Entwistle Oct 15 '16 at 09:27