INDUCTION PROOF:
If one wishes to prove the identity using induction, we first establish a benchmark. Letting $n=1$, we find that $\sum_{k=1}^{2}\frac{(-1)^{k+1}}{k}=1/2=\sum_{k=2}^2\frac1k$.
Next, we assume that the identity works for some number $n$
$$\color{blue}{\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}}=\color{red}{\sum_{k=n+1}^{2n}\frac1k} \tag 1$$
Then, we test the validity of the relationship in $(1)$ for $n+1$. Proceeding we find that
$$\begin{align}
\sum_{k=1}^{2n+2}\frac{(-1)^{k+1}}{k}&=\color{blue}{\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}}+\frac{1}{2n+1}-\frac{1}{2n+2}\\\\
&=\color{red}{\sum_{k=n+1}^{2n}\frac1k}+\left(\frac{1}{2n+1}-\frac{1}{2n+2}\right)\\\\
&=\sum_{k=n+2}^{2n+2}\frac1k+\frac{1}{n+1}-\left(\frac{1}{2n+1}+\frac{1}{2n+2}\right)+\left(\frac{1}{2n+1}-\frac{1}{2n+2}\right)\\\\
&=\sum_{k=n+2}^{2n+2}\frac1k
\end{align}$$
as expected.
DIRECT PROOF:
Note that we can write
$$\begin{align}
\sum_{k=1}^{2n}\frac{(-1)^{k+1}}{k}&=\sum_{k=1}^n\frac{1}{2k-1}-\sum_{k=1}^n\frac1{2k}\\\\
&=\sum_{k=1}^n\left(\frac{1}{2k-1}+\frac{1}{2n}\right)-2\sum_{k=1}^{n}\frac1{2k}\\\\
&=\sum_{k=1}^{2n}\frac1k-\sum_{k=1}^n\frac1{k}\\\\
&=\sum_{k=n+1}^{2n}\frac1k
\end{align}$$
as was to be shown!