$$ \lim_{x\to \infty} ({1-\frac{1}{x}})^x $$
I can solve it using L'Hopital, but not without. No taylor series just algebra
$$ \lim_{x\to \infty} ({1-\frac{1}{x}})^x $$
I can solve it using L'Hopital, but not without. No taylor series just algebra
$$\lim_{x\to\infty}\left(1-\frac{1}{x}\right)^x=\lim_{x\to\infty}\left(\frac{x-1}{x}\right)^x=\lim_{x\to\infty}\left(\frac{x}{x-1}\right)^{-x}=\lim_{x\to\infty}\left(1+\frac{1}{x-1}\right)^{-x}=$$ $$=\left\{u=x-1\right\}=\lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{-\left(u+1\right)}=\lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{-u}\cdot \lim_{u\to\infty}\left(1+\frac{1}{u}\right)^{-1}=\frac{1}{e}\cdot 1=\frac{1}{e}$$
Note that splitting the limit to a product of limits is fine since both limits exist.
$$ \lim_{x\to \infty}\left({1-\frac{1}{x}}\right)^x=\lim_{x\to \infty} \frac1{\left(1+\dfrac 1{x-1}\right)^{x}}.$$
Then you can replace $x-1$ by $x$ without changing the result and the limit is $\dfrac1e$.