I have been trying to show that $$\Bigg[\sum_{n=0}^{\infty}\frac{{2n}\choose{n}}{4^n}x^n\Bigg]^2=\sum_{n=0}^{\infty}x^n \text{ where }0\leq x<1$$ using only combinatorics.
So far, here is what I have tried:
\begin{align} \Bigg[\sum_{n=0}^{\infty}\frac{{2n}\choose{n}}{4^n}x^n\Bigg]^2 &= \sum_{n=0}^{\infty}\sum_{m=0}^\infty\frac{{{2n}\choose{n}} {{2m}\choose{m}}}{4^{m+n}}x^{m+n}\\ &=\sum_{k=0}^{\infty}\sum_{m=0}^{k}\frac{{{2(k-m)}\choose{k-m}} {{2m}\choose{m}}}{4^{k}}x^{k}\\ \end{align}
So, it suffices to show the following: $$\sum_{m=0}^{k}{{2(k-m)}\choose{k-m}} {{2m}\choose{m}}=4^k$$ I can rewrite this like so: $$\sum_{m=0}^{k}\frac{(2k-2m)!(2m)!}{\big[(k-m)!\big]^2\big(m!\big)^2}=4^k$$
Unfortunately, I don't no how to procede from here. Any help would be greatly appreciated.