$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{\sum_{n = 1}^{\infty}{4n \over n^{4} + 2n^{2} + 9}}$.
\begin{align}
&\sum_{n = 1}^{\infty}{4n \over n^{4} + 2n^{2} + 9} =
\sum_{n = 0}^{\infty}{4n \over \pars{n^{2} - 2n + 3}\pars{n^{2} + 2n + 3}}
=
\sum_{n = 0}^{\infty}\pars{{1 \over n^{2} - 2n + 3} - {1 \over n^{2} + 2n + 3}}
\\[5mm] = &\
\lim_{N \to \infty}\pars{\sum_{n = 0}^{N}{1 \over \pars{n - 1}^{2} + 2} -
\sum_{n = 0}^{N}{1 \over \pars{n + 1}^{2} + 2}} =
\lim_{N \to \infty}\pars{\sum_{n = -1}^{N - 1}{1 \over n^{2} + 2} -
\sum_{n = 1}^{N + 1}{1 \over n^{2} + 2}}
\\[5mm] = &\
\lim_{N \to \infty}\pars{{1 \over 3} + {1 \over 2} +
\sum_{n = 1}^{N - 1}{1 \over n^{2} + 2} -
\sum_{n = 1}^{N - 1}{1 \over n^{2} + 2} - {1 \over N^{2} + 2} -
{1 \over \pars{N + 1}^{2} + 2}}
\\[5mm] = &\
\lim_{N \to \infty}\pars{{5 \over 6} - {1 \over N^{2} + 2} -
{1 \over \pars{N + 1}^{2} + 2}} = \bbx{\ds{5 \over 6}}
\end{align}