0

Proove or disprove by example

If $\{x_1,x_2\}=\{y_1,y_2\}$ then (12) or (21) holds.
(12) $x_1=y_1$ and $x_2=y_2$; (21) $x_1=y_2$ and $x_2$=$y_1$.

I am mistaking something or could I just set $x_1=x_2=y_1$ and $y_2=\emptyset$ and disprove the whole thing?

Moreover, couldn't I use the same trick again for this?
If $\{x_1,x_2,x_3\}= \{y_1,y_2,y_3\}$ then at least one of the six (123)-(321) holds.
(123) $x_1=y_1$, $x_2=y_2$, $x_3=y_3$.
(132) $x_1=y_1$, $x_2=y_3$, $x_3=y_2$.
(213) $x_1=y_2$, $x_2=y_1$, $x_3=y_3$.
(231) $x_1=y_2$, $x_2=y_3$, $x_3=y_1$.
(312) $x_1=y_3$, $x_2=y_1$, $x_3=y_2$.
(321) $x_1=y_3$, $x_2=y_2$, $x_3=y_1$.

Asaf Karagila
  • 393,674
Ben373
  • 393

1 Answers1

2

This is a common error: the emptyset isn't nothing! For example, $\{\emptyset\}$ and $\{\}$ are very different things (think about the difference between an empty bag, and a bag containing an empty bag). So, in particular, if we let $x_1=x_2=y_1=a$ for some $a\not=\emptyset$, then $\{x_1, x_2\}=\{a\}$, but $\{y_1, y_2\}=\{a, \emptyset\}\not=\{a\}$.

This issue has been treated on this site (and in a number of other places); see e.g. here.

Noah Schweber
  • 245,398