Proove or disprove by example
If $\{x_1,x_2\}=\{y_1,y_2\}$ then (12) or (21) holds.
(12) $x_1=y_1$ and $x_2=y_2$; (21) $x_1=y_2$ and $x_2$=$y_1$.
I am mistaking something or could I just set $x_1=x_2=y_1$ and $y_2=\emptyset$ and disprove the whole thing?
Moreover, couldn't I use the same trick again for this?
If $\{x_1,x_2,x_3\}= \{y_1,y_2,y_3\}$ then at least one of the six (123)-(321) holds.
(123) $x_1=y_1$, $x_2=y_2$, $x_3=y_3$.
(132) $x_1=y_1$, $x_2=y_3$, $x_3=y_2$.
(213) $x_1=y_2$, $x_2=y_1$, $x_3=y_3$.
(231) $x_1=y_2$, $x_2=y_3$, $x_3=y_1$.
(312) $x_1=y_3$, $x_2=y_1$, $x_3=y_2$.
(321) $x_1=y_3$, $x_2=y_2$, $x_3=y_1$.