Find the sum of series $\sum_{n=1}^{\infty} \frac{2n-1}{2^n}$
Asked
Active
Viewed 135 times
3 Answers
0
Hints:
Fill in details in the following:
$$|x|<1\implies\frac1{1-x}=\sum_{n=0}^\infty x^n\implies\frac1{(1-x)^2}=\sum_{n=1}^\infty nx^{n-1}\implies\frac{2x}{(1-x)^2}=\sum_{n=1}^\infty 2nx^n$$
and now choose and sustitute in the above $\;x=...\;$ and then...

DonAntonio
- 211,718
- 17
- 136
- 287
0
Hint: Use the series $$ \sum_{k=0}^\infty x^k=\frac1{1-x} $$ and $x$ times its derivative $$ \sum_{k=0}^\infty kx^k=\frac{x}{(1-x)^2} $$

robjohn
- 345,667
0
It is clearly an absolutely convergent series, hence by setting $S=\sum_{n\geq 1}\frac{2n-1}{2^n}$ we have: $$ 2S = \sum_{n\geq 1}\frac{2n-1}{2^{n-1}}=\sum_{n\geq 1}\frac{(2(n-1)-1)+2}{2^{n-1}}=4+\sum_{n\geq 1}\frac{2(n-1)-1}{2^{n-1}} $$ or $ 2S = 3+S$, from which $\color{red}{S=3}$.

Jack D'Aurizio
- 353,855