I am wondering if anyone can validate my proof for this problem I am working on.
Question: Let $f(x)$ be a non-constant polynomial in $\mathbb Z[x].$ Prove that $\langle f(x)\rangle$ is not maximal in $\mathbb Z[x]$.
Clearly $\frac{\mathbb Z[x]}{\langle f(x)\rangle}$ is a field iff $\langle f(x)\rangle$ is a maximal ideal.
Proof: $\langle f(x)\rangle = \{g(x)f(x) \mid g(x) \in \mathbb Z[x]\}$. Thus $\langle f(x)\rangle$ is just all non-constant polynomials.
Let $a \in \frac{\mathbb Z[x]}{\langle f(x)\rangle} = \{ a_0 + \langle f(x)\rangle \mid a_0 \in \mathbb Z\}$. Thus $a_0$ is a constant and is not 'absorbed' by $\langle f(x)\rangle$.
Does there exists an element $b \in \frac{\mathbb Z[x]}{\langle f(x)\rangle} = \{ b_0 + \langle f(x) \rangle \mid b_0 \in \mathbb Z[x]\}$ s.t. $ab = 1 + \langle f(x)\rangle$ (the identity).
But $\langle f(x)\rangle$ absorbs all non-constant polynomials, thus $a_0$, $b_0$ must be non-constant, and $a_0 b_0 \in \mathbb Z$.
Clearly, not all elements of $\mathbb Z$ have multiplicative inverses, and there does not exist elements
$a = \{a_0 + \langle f(x)\rangle \mid a_0 \in \mathbb Z\}$, $b = \{b_0 + \langle f(x) \rangle \mid b_0 \in \mathbb Z[x]\}$ where $a_0 b_0 = 1 + \langle f(x)\rangle$.
Therefore, not all elements of $\frac{\mathbb Z[x]}{<f(x)>}$ are units, $\frac{\mathbb Z[x]}{\langle f(x)\rangle}$ is not a field, $\langle f(x)\rangle$ is not a maximal ideal of $\mathbb Z[x]$.