$x,y \in\Bbb Z$. Prove that if $x$ and $y$ are both odd, then $8\mid (x^2 - y^2)$.
My Proof Starts:
Assume $x$ and $y$ are both odd. So, $x = 2k + 1$ and $y = 2l +1$ for some integers $k$ and $l$. Thus, \begin{align} x^2 - y^2 &= (2k + 1)^2 - (2l + 1)^2 \\ &= 4k^2 + 4k + 1 - (4l^2 + 4l + 1) \\ &= 4k^2 + 4k - 4l^2 - 4l \end{align}
My two concerns:
1) Is this correct so far?
2) How would I deal with the “$8\;\mid$” part?