Let me rewrite the Newton expansion as:
$$
\begin{gathered}
f(x) = \sum\limits_{0\, \leqslant \,j} {\;\left( \begin{gathered}
x \hfill \\
j \hfill \\
\end{gathered} \right)\sum\limits_{0\, \leqslant \,k\,\left( { \leqslant \,j} \right)} {\left( { - 1} \right)^{j - k} \left( \begin{gathered}
j \\
k \\
\end{gathered} \right)\;k!} } = \hfill \\
= \sum\limits_{\begin{array}{*{20}c}
{0\, \leqslant \,j} \\
{0\, \leqslant \,k\,\left( { \leqslant \,j} \right)} \\
\end{array} } {\;\left( \begin{gathered}
x \\
j \\
\end{gathered} \right)\left( { - 1} \right)^{j - k} \left( \begin{gathered}
j \\
k \\
\end{gathered} \right)\;k!} \hfill \\
\end{gathered}
$$
which, when developed further gives:
$$
\begin{gathered}
f(x) = \sum\limits_{\begin{array}{*{20}c}
{0\, \leqslant \,j} \\
{0\, \leqslant \,k\,\left( { \leqslant \,j} \right)} \\
\end{array} } {\;\left( \begin{gathered}
x \\
j \\
\end{gathered} \right)\left( { - 1} \right)^{j - k} \left( \begin{gathered}
j \\
k \\
\end{gathered} \right)\;k!} = \hfill \\
= \sum\limits_{\begin{array}{*{20}c}
{k\, \leqslant \,j} \\
{0\, \leqslant \,k} \\
\end{array} } {\;\left( \begin{gathered}
x \\
k \\
\end{gathered} \right)\left( { - 1} \right)^{j - k} \left( \begin{gathered}
x - k \\
j - k \\
\end{gathered} \right)\;k!} = \hfill \\
= \sum\limits_{0\, \leqslant \,k} {\;\left( \begin{gathered}
x \\
k \\
\end{gathered} \right)\left( {1 - 1} \right)^{\,x - k} \;k!} = \sum\limits_{0\, \leqslant \,k} {\;\left( \begin{gathered}
x \\
k \\
\end{gathered} \right)0^{\,x - k} \;k!} \hfill \\
\end{gathered}
$$
or:
---- reviewed ----
$$
\begin{gathered}
f(x) = \sum\limits_{\begin{array}{*{20}c}
{0\, \leqslant \,j} \\
{0\, \leqslant \,k\,\left( { \leqslant \,j} \right)} \\
\end{array} } {\;\left( \begin{gathered}
x \\
j \\
\end{gathered} \right)\left( { - 1} \right)^{j - k} \left( \begin{gathered}
j \\
k \\
\end{gathered} \right)\;k!} = \hfill \\
= \sum\limits_{\begin{array}{*{20}c}
{0\, \leqslant \,j} \\
{0\, \leqslant \,k\, \leqslant \,j} \\
\end{array} } {\;\left( {\frac{{\left( { - 1} \right)^k }}
{{\left( {j - k} \right)!}}} \right)\left( { - 1} \right)^j x^{\,\underline {\,j\,} } } = \hfill \\
= \sum\limits_{0\, \leqslant \,j} {\;\left( {\sum\limits_{0\, \leqslant \,k\, \leqslant \,j} {\frac{{\left( { - 1} \right)^k }}
{{k!}}} } \right)x^{\,\underline {\,j\,} } } = \hfill \\
= \sum\limits_{0\, \leqslant \,l} {\left( {\sum\limits_{0\, \leqslant \,j\, \leqslant \,u} {\;\left( {\sum\limits_{0\, \leqslant \,k\, \leqslant \,j} {\frac{{\left( { - 1} \right)^k }}
{{k!}}} } \right)\left( { - 1} \right)^{j - l} \left[ \begin{gathered}
j \\
l \\
\end{gathered} \right]} } \right)x^{\,l} } \hfill \\
\end{gathered}
$$
where the upper bound $u$ in the summation in $j$ is $u=x$ if $x$ is a non-negative integer, otherwise $u= \infty$.
Either the first derivation - which practically gives $f(x) = \left[ {0 \leqslant \text{integer}\,x} \right]x!$ -
and the second indicate that the Newton interpolation is valid only for integral $x$.
In the second expression we have that the coefficients , given by the sum in $k$,
are $1, \; 0, \; 1/2, \; 1/3, \; 3/8, \cdots \to \;1/e$.
The Stirling Numbers of the first kind are increasing with the upper index.
Their alternate sum, if extended to infinity, is undefined.
If you plot a partial sum from the above expansion against $\Gamma(x+1)$
you will notice that the approximant polynomial oscillates among the interpolation points,
which is known as Runge's phenomenon.
The Gamma function has the requisites for this to occur since it has poles distributed all over the negative $x$ axis.
And in fact, the Newton interpolation works much better for 1/Gamma, i.e.
$$
\begin{gathered}
\frac{1}
{{\Gamma (x + 1)}} = \sum\limits_{\begin{array}{*{20}c}
{0\, \leqslant \,j} \\
{0\, \leqslant \,k\,\left( { \leqslant \,j} \right)} \\
\end{array} } {\;\left( \begin{gathered}
x \\
j \\
\end{gathered} \right)\left( { - 1} \right)^{j - k} \left( \begin{gathered}
j \\
k \\
\end{gathered} \right)\;\frac{1}
{{k!}}} = \hfill \\
= \sum\limits_{0\, \leqslant \,j} {\left( {\sum\limits_{0\, \leqslant \,k\,\left( { \leqslant \,j} \right)} {\;\;\frac{{\left( { - 1} \right)^k }}
{{k!\left( {\left( {j - k} \right)!} \right)^2 }}} } \right)x^{\,\underline {\,j\,} } } \hfill \\
\end{gathered}
$$