Let $p$ be an odd prime. Is it true that $$-\left(\begin{array}{c}p+1\\ 2\end{array}\right)+\left(\begin{array}{c}p+1\\ 3\end{array}\right)\dots+\left(\begin{array}{c}p+1\\ p\end{array}\right)-\left(\begin{array}{c}p+1\\ p+1\end{array}\right)=p?$$
I could show that it is true for $p\in\{3,5\}$, but I could not prove it. Any help will be greatly appreciated!
Note: For positive integers $k$ and $n$, where $k\leq n$, we define $\left(\begin{array}{c}n\\ k\end{array}\right)=\frac{n!}{k!(n-k)!}$.