$\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
By "$\textsf{using limits}$", the Stoltz-Ces$\grave{a}$ro Theorem yields:
\begin{align}
\lim_{n \to \infty}{1 \over n}\,\ln\pars{{2n \choose n}} & =
\lim_{n \to \infty}{\ln\pars{{2\bracks{n + 1} \choose n + 1}} -
\ln\pars{{2n \choose n }} \over \pars{n + 1} - n} =
\lim_{n \to \infty}\ln\pars{{2n + 2 \choose n+1} \over {2n \choose n}}
\\[5mm] & =
\lim_{n \to \infty}\ln\pars{\bracks{2n + 2}\bracks{2n + 1} \over
\bracks{n + 1}\bracks{n + 1}} = \ln\pars{4}
\end{align}
$$
\color{#f00}{\lim_{n \to \infty}{2n \choose n}^{1/n}} = \color{#f00}{4}
$$