So by using tabular integration: $$\int_{2\pi}^\infty \frac{\sin(x)}{x} \, dx$$ $$= \left. -\frac{1}{x}\cos(x) - \frac{1}{x^2}\sin(x) + \frac{2}{x^3}\cos(x) + \frac{2\cdot3}{x^4}\sin(x) - \frac{2\cdot3\cdot4}{x^5}\cos(x) - \frac{2\cdot3\cdot4\cdot5}{x^6}\sin(x) + \cdots \right|_{2\pi}^\infty$$
adding all the cosine terms gives:
$$\left.-\frac{1}{x}\cos(x)+ \frac{2}{x^3}\cos(x)- \frac{2\cdot3\cdot4}{x^5} \cos(x) + \cdots = \sum_{n=1}^\infty \frac{(-1)^n (2n-2)!}{x^{2n-1}} \cos(x) \right|_{2\pi}^\infty$$
and similarly for the sine terms:
$$\left.-\frac{1}{x^2}\sin(x)+ \frac{2\cdot3}{x^4}\sin(x)- \frac{2\cdot3\cdot4\cdot5}{x^6}\sin(x)+\cdots =\sum_{n=1}^\infty \frac{(-1)^n \cdot (2n-1)!}{x^{2n}} \sin(x) \right|_{2\pi}^\infty$$
So putting everything back together we have:
$$\left.\int_{2\pi}^\infty \frac{\sin(x)}{x} \, dx = \sum_{n=1}^\infty \frac{(-1)^n (2n-2)!}{x^{2n-1}} \cos(x)+ \sum_{n=1}^\infty \frac{(-1)^n (2n-1)!}{x^{2n}} \sin(x) \right|_{2\pi}^\infty$$
I think that as $x$ approaches $\infty$ the fractions in both sums approach $0$, so the top limit does not yield anything from the sums. Likewise, $\sin(2\pi) = 0$ and $\cos(2\pi) = 1$, so all that we are left with is:
$$\int_{2\pi}^\infty \frac{\sin(x)}{x} \, dx = -\sum_{n=1}^\infty \frac{(-1)^n (2n-2)!}{(2\pi)^{2n-1}}$$
However, putting this sum into wolfram I get that the sum is divergent, which doesn't seem right to me since $ f(x) = \frac{\sin(x)}{x}$ decreases to $0$ quite fast.
Is my logic inconsistent here? Have I done the integration incorrectly, or used a technique improperly/ inappropriately?