Possible Duplicate:
Proving $\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt \pi}{2}$
My calculus is a bit rusty, how should I solve this in order to calculate the solution?
$\int^{\infty}_{-\infty}e^{-x^{2}}dx=\sqrt{\pi}$
Possible Duplicate:
Proving $\int_{0}^{+\infty} e^{-x^2} dx = \frac{\sqrt \pi}{2}$
My calculus is a bit rusty, how should I solve this in order to calculate the solution?
$\int^{\infty}_{-\infty}e^{-x^{2}}dx=\sqrt{\pi}$
if $I=\int_{-\infty}^{\infty}e^{-x^2}$ then $$I^2=\int\int e^{-(x^2+y^2)}dxdy=\int\int re^{-r^2}drd\theta=\pi$$