HINT: Notice that
$$\frac{m+1}{m+1-n}\binom{m}n=\frac{m+1}{m-n+1}\binom{m}{m-n}=\binom{m+1}{m-n+1}\;,$$
something relatively nice, so let’s see if we can evaluate $\binom{m}n$ times the summation.
$$\begin{align*}
\binom{m}n\sum_{k=0}^n\binom{n}k\binom{m}k^{-1}&=\sum_{k=0}^n\left(\frac{m!}{n!(m-n)!}\cdot\frac{n!}{k!(n-k)!}\cdot\frac{k!(m-k)!}{m!}\right)\\
&=\sum_{k=0}^n\frac{(m-k)!}{(m-n)!(n-k)!}\\
&=\sum_{k=0}^n\binom{m-k}{m-n}\\
&=\sum_{k=m-n}^m\binom{k}{m-n}\;.
\end{align*}$$
(In each of the last two summations the upper number runs through the integers from $m-n$ to $m$ inclusive; it just does so in opposite orders.) Now use the hockey stick identity and a little algebra, and you’re home free.