Here's another proof that is more general. Let $f(t)$ be any power series with $f(0) = 0$. Define a polynomial sequence $p_n(x)$ by $$\sum_{n=0}^\infty \frac{p_n(x)}{n!} t^n = e^{tf(x)}.$$
Polynomials $p_n(t)$ of this form are said to be of binomial type because they obey a binomial theorem:
Claim: We have $p_n(x+y) = \sum_{k=0}^\infty {n \choose k} p_k(x) p_{n-k}(x).$
Proof:
Consider $e^{(x+y)f(x)}$. We have $$e^{(x+y)f(t)} = \sum_{n=0}^\infty \frac{p_n(x+y)}{n!} t^n.$$ On the other hand,
\begin{align*}
e^{xf(t)} e^{yf(t)} &= \left(\sum_{i=0}^\infty \frac{p_i(x)}{i!} t^i\right) \left(\sum_{j=0}^\infty \frac{p_j(x)}{j!} t^j\right)\\
&= \sum_{n=0}^\infty \sum_{i+j=n}\frac{p_i(x)}{i!} \frac{p_j(x)}{j!} t^n\\
&= \sum_{n=0}^\infty \sum_{k=0}^n {n \choose k} p_k(x)p_{n-k}(y) \frac{t^n}{n!}.
\end{align*}
Now comparing the coefficient of $t^n/n!$ in the two equations proves the claim.
To get the falling factorials, take $f(t) = \log(1+t)$. Then $$e^{xf(t)} = e^{x \log(1+t)} = (1+t)^x = \sum_{n=0}^\infty {x \choose n} t^n = \sum_{n=0}^\infty \frac{(x)_n}{n!} t^n$$ so $p_n(x) = (x)_n$. To get the usual binomial theorem, take $f(t) = t$.