There are some values: $$ a^{2\alpha }, \quad (a^{\alpha})^{2}, \quad (a^{2})^{\alpha }.$$ How to prove that the sets of these values are not equal?
Addition 1. For example, I used one simple task equal to $\left(z^{2}\right)^{\alpha}$.
Let's have two values: $z^{\frac{m}{n}}: z^{\frac{m}{n}}, \quad \left(z^{\frac{1}{n}}\right)^{m}$, where $n, m$ are not integer in general. Without loss of generality we can assume, that |z| = 1. $$z^{\frac{m}{n}} = e^{i\frac{m}{n}(\varphi + 2\pi k)} = cos\left(\frac{m}{n}\left( \varphi + 2 \pi k\right)\right) + isin\left(\frac{m}{n}\left( \varphi + 2 \pi k\right)\right).$$ $$\left(z^{m}\right)^{\frac{1}{n}} = cos\left(\frac{m}{n}\left( \varphi + 2 \pi k \right) + 2m\pi j\right) + isin\left(\frac{m}{n}\left( \varphi + 2 \pi k \right) + \frac{1}{n}2\pi j\right).$$ There are difference sets of values.
Addition 2. Previous example was bad. So I created new example: for $\alpha = x + iy$ $$\left(a^{\alpha}\right)^{2} = \left(e^{xln(r) - y(\varphi + 2 \pi k)}[cos(x (\varphi + 2 \pi k) + yln(r)) + isin(x (\varphi + 2 \pi k) + yln(r))]\right)^{2} = $$ $$ = e^{2xln(r) - 2y(\varphi + 2 \pi k)}[cos(2x (\varphi + 2 \pi k) + 2yln(r)) + isin(2x (\varphi + 2 \pi k) + 2yln(r))],$$ $$\left(a^{2}\right)^{\alpha} = e^{2xln(r) - y(2\varphi + 2 \pi k)}[cos(x (2\varphi + 2 \pi k) + 2yln(r)) + isin(x (2\varphi + 2 \pi k) + 2yln(r))].$$
Can somebody generalize this result?