Let $G$ be a group. Prove that IF $x^2 = e$ for all $x \in G$, then $G$ is abelian.
My attempt:
$x^2 = e$
$x = x^{-1}$
$xx^{-1}=x^{-1}x^{-1}$
$e = x^{-1}x^{-1}$
$e = (xx)^{-1}$
$e = (x^2)^{-1}$
$e^{-1} = ((x^2)^{-1})^{-1})$
$e = x^2$
Hence, $G$ is abelian.