2

show that for $n>1$, $$\frac{n}{1+n} < \ln(1+\frac{1}{n})^n < 1$$

by using $\frac{1}{n} < \ln n $ and $\ln(1+n) < n$ for $n>1$

I am unable to prove $\frac{n}{1+n} < \ln(1+\frac{1}{n})^n $

345
  • 21

2 Answers2

1

$$\frac{1}{\frac{n+1}{n}}=\frac{n}{n+1}<\ln(\frac{n+1}{n})=\ln(1+\frac{1}{n})<\frac{1}n$$

For $n>1$, we have $0<\ln(1+\frac{1}{n})<1, $ so $$\ln(1+\frac{1}{n})^n<1$$ Also, $$1>\ln(1+\frac{1}{n})^n=n*\ln(1+\frac{1}{n})>n(\frac{n}{n+1})>\frac{n}{n+1}\text{ , for }n>1$$ finishes the proof

Nick
  • 2,769
  • From $\ln(1 + \frac{1}{n}) < 1$, $\left(\ln(1 + \frac{1}{n})\right)^n < 1$, but $\left(\ln(1 + \frac{1}{n})\right)^n \neq n \cdot \ln(1 + \frac{1}{n}) = \ln\left((1 + \frac{1}{n})^n\right)$ – ILikeMathematics Jan 02 '23 at 19:54
0

One may observe that $$ f(x)=\ln(1+x)-\frac{x}{1+x},\qquad x \in[0,1], $$ is such that $$ f(0)=0,\quad f'(x)=\frac{x}{(1+x)^2}\ge0,\qquad x \in[0,1], $$ giving $$ \ln(1+x)-\frac{x}{1+x}\ge0,\qquad x \in[0,1]. $$ By putting $x:=\dfrac1n$, $n \ge1$, one gets $$ n\ln\left(1+\frac1n\right)-\frac{n}{1+n}\ge 0 $$ as wanted.

Olivier Oloa
  • 120,989