Here we are looking for the number $f_N$ of binary strings of length $N$ which do not contain the substring $HHHH$. The probability $p$ is then $$p=1-\frac{f_{10}}{2^{10}}$$
The so-called Goulden-Jackson Cluster Method is a convenient technique to derive a generating function for problems of this kind.
We consider words of length $N\geq 0$ built from an alphabet $$\mathcal{V}=\{H,T\}$$ and the set $\mathcal{B}=\{HHHH\}$ of bad words which are not allowed to be part of the words we are looking for.
We derive a function $F(x)$ with the coefficient of $x^N$ being the number of wanted words of length $N$.
According to the paper (p.7) the generating function $F(x)$ is
\begin{align*}
F(x)=\frac{1}{1-dx-\text{weight}(\mathcal{C})}
\end{align*}
with $d=|\mathcal{V}|=2$, the size of the alphabet and with the weight-numerator $\mathcal{C}$ with
\begin{align*}
\text{weight}(\mathcal{C})=\text{weight}(\mathcal{C}[HHHH])
\end{align*}
We calculate according to the paper
\begin{align*}
\text{weight}(\mathcal{C}[HHHH])&=-x^4-\text{weight}(\mathcal{C}[HHHH])\left(x+x^2+x^3\right)
\end{align*}
It follows:
A generating function $F(x)$ for the number of words built from $\{H,T\}$ which do not contain the subword $HHHH$ is
\begin{align*}
F(x)&=\frac{1}{1-dx-\text{weight}(\mathcal{C})}\\
&=\frac{1}{1-2x+\frac{x^4}{1+x+x^2+x^3}}\\
&=\frac{1+x+x^2+x^3}{1-x-x^2-x^3-x^4}
\end{align*}
Since the generating function counting the number $2^N$ of all binary strings of length $N$ is
\begin{align*}
\frac{1}{1-2x}=1+2x+4x^2+\cdots
\end{align*}
A generating function for the number binary strings of length $N$ which contains the string $HHHH$ is
\begin{align*}
\frac{1}{1-2x}-F(x)&=\frac{1}{1-2x}-\frac{1+x+x^2+x^3}{1-x-x^2-x^3-x^4}\\
&=\frac{x^4}{(1-2x)(1-x-x^2-x^3-x^4)}\\
&=x^4+3x^5+8x^6+\color{green}{20}x^7+48x^8+111x^9+\color{blue}{251}x^{10}\\
&\qquad 558x^{11}+1224x^{12}+2656x^{13}+5713x^{14}+12199x^{15}+\cdots\tag{1}
\end{align*}
The last line was calculated with the help of Wolfram Alpha and we see there are $\color{blue}{251}$ strings of length $10$ which contain the subword $HHHH$.
For example the $20$ strings of length $7$ containing the substring $HHHH$ are
\begin{array}{lllll}
\color{green}{HHHH}HHH\quad&\quad \color{green}{HHHH}HHT\quad&\quad \color{green}{HHHH}HTH\quad&\quad \color{green}{HHHH}HTT\\
\color{green}{HHHH}THH\quad&\quad \color{green}{HHHH}THT\quad&\quad \color{green}{HHHH}TTH\quad&\quad \color{green}{HHHH}TTT\\
HHT\color{green}{HHHH}\quad&\quad HT\color{green}{HHHH}H\quad&\quad HT\color{green}{HHHH}T\quad&\quad HTT\color{green}{HHHH}\\
T\color{green}{HHHH}H\quad&\quad T\color{green}{HHHH}HT\quad&\quad T\color{green}{HHHH}TH\quad&\quad T\color{green}{HHHH}TT\\
THT\color{green}{HHHH}\quad&\quad TTH\color{green}{HHHH}\quad&\quad TT\color{green}{HHHH}T\quad&\quad TTT\color{green}{HHHH}\\
\end{array}
We finally conclude from (1): The probability of $4$ heads in $10$ coin tosses is $$\frac{251}{2^{10}}\doteq 0.2451$$