How to calculate this sum $$ \sum_{k=0}^{n-1}(-1)^k{n \choose k} {3n-k-1 \choose 2n -k } $$ without complex integral technique? Or how to calculate asymptotic nature this sum without calculation of this sum?
-
it looks like van der mondes idenity is involved – tired Sep 29 '16 at 14:23
-
$ \left(-1\right)^{n + 1}{2n - 1 \choose n},,\qquad n \geq 1$. – Felix Marin Oct 04 '16 at 23:02
6 Answers
I like combinatorial solutions, and the form of the sum
$$\sum_{k=0}^{n-1}(-1)^k\binom{n}k\binom{3n-k-1}{2n-k}$$
immediately suggests that it could result from an inclusion-exclusion calculation, though it is missing what would normally be the final term,
$$(-1)^n\binom{2n-1}n\;.$$
It turns out to be convenient to make use of the fact that
$$\binom{3n-k-1}{2n-k}=\binom{3n-k-1}{n-1}$$
to rewrite the summation as
$$\sum_{k=0}^{n-1}(-1)^k\binom{n}k\binom{3n-k-1}{n-1}\;.$$
Suppose that I want to count the $(n-1)$-element subsets of $[3n-1]\setminus[n]$, where as usual $[m]=\{1,\ldots,m\}$ for any $m\in\Bbb Z^+$. For each $k\in[n]$ let $\mathscr{A}_k$ be the family of $(n-1)$-element subsets of $[3n-1]$ that do not contain $k$. It’s not hard to see that if $\varnothing\ne I\subseteq[n]$, then
$$\left|\bigcap_{k\in I}\mathscr{A}_k\right|=\binom{3n-1-|I|}{n-1}\;,$$
so
$$\left|\bigcup_{k\in[n]}\mathscr{A}_k\right|=\sum_{\varnothing\ne I\subseteq[n]}(-1)^{|I|+1}\left|\bigcap_{k\in I}\mathscr{A}_k\right|=\sum_{k=1}^n(-1)^{k+1}\binom{n}k\binom{3n-1-k}{n-1}\;.$$
This is the number of $(n-1)$-element subsets $S$ of $[3n-1]$ such that $[n]\nsubseteq S$, so
$$\begin{align*} \binom{3n-1}{n-1}-\sum_{k=1}^n(-1)^{k+1}\binom{n}k\binom{3n-1-k}{n-1}&=\binom{3n-1}{n-1}+\sum_{k=1}^n(-1)^k\binom{n}k\binom{3n-1-k}{n-1}\\ &=\sum_{k=0}^n(-1)^k\binom{n}k\binom{3n-1-k}{n-1} \end{align*}$$
is the number of $(n-1)$-element subsets $S$ of $[3n-1]$ such that $[n]\subseteq S$. This is obviously $0$, so
$$\sum_{k=0}^n(-1)^k\binom{n}k\binom{3n-1-k}{n-1}=0\;,$$
and
$$\begin{align*} \sum_{k=0}^{n-1}(-1)^k\binom{n}k\binom{3n-1-k}{n-1}&=-(-1)^n\binom{2n-1}{n-1}\\ &=(-1)^{n+1}\binom{2n-1}{n-1}\\ &=(-1)^{n+1}\binom{2n-1}n\;. \end{align*}$$

- 616,228
-
@BrianMScott: I appreciate your combinatorial experience and capabilities. To me it seems you don't have to look for a combinatorial answer, but you can simply read the formulas in a combinatorial manner. :-) (+1) – Markus Scheuer Sep 29 '16 at 20:27
-
@Markus: In this case that’s very nearly true, though I do think that a little interpretation is required. – Brian M. Scott Sep 29 '16 at 20:34
-
@BrianMScott: I agree and it's an appeasing message that you also need at least a little interpretation. Regards, – Markus Scheuer Sep 29 '16 at 20:43
It is convenient to use the coefficient of operator $[z^k]$ to denote the coefficient of $z^k$ in a series. This way we can write e.g. \begin{align*} [z^k](1+z)^n=\binom{n}{k} \end{align*}
We obtain for $n\geq 1$: \begin{align*} \sum_{k=0}^{n-1}&(-1)^k\binom{n}{k}\binom{3n-k-1}{2n-k}\\ &=\sum_{k=0}^{n}\binom{n}{k}\binom{-n}{2n-k}-\binom{-n}{n}\tag{1}\\ &=\sum_{k=0}^\infty[z^k](1+z)^n[u^{2n-k}](1+u)^{-n}+\color{blue}{(-1)^{n-1}\binom{2n-1}{n}}\tag{2}\\ &=[u^{2n}](1+u)^{-n}\sum_{k=0}^\infty u^k[z^k](1+z)^n+(-1)^{n-1}\binom{2n-1}{n}\tag{3}\\ &=[u^{2n}]1+(-1)^{n-1}\binom{2n-1}{n}\tag{4}\\ &=(-1)^{n-1}\binom{2n-1}{n} \end{align*}
Comment:
In (1) we use the binomial identity $\binom{-p}{q}=\binom{p+q-1}{q}(-1)^k$. We also add the term with index $k=n$ to the sum and subtract $\binom{-n}{n}$ accordingly.
In (2) we apply the coefficient of operator twice and use again the binomial identity as in (1). We also set the upper limit of the sum to $\infty$ without changing anything since we are adding zeros only.
In fact we have isolated the result (blue) and show the rest is equal to zero.
In (3) we use the linearity of the coefficient of operator and apply the rule $$[z^{p-q}]A(z)=[z^p]z^qA(z)$$
In (4) we use the substitution rule with $z:=u$ \begin{align*} A(u)=\sum_{k=0}^\infty a_k u^k=\sum_{k=0}^\infty u^k [z^k]A(z) \end{align*}
do some simplifications and observe the coefficient of $[u^{2n}]1=0$.

- 108,315
-
+1. The $\left[\cdots\right]$ hides the Complex Method, anyway. Fine answer. – Felix Marin Oct 04 '16 at 23:06
-
$(-1)^k\binom{n}{k}$ is the coefficient of $x^k$ in $(1-x)^n$.
$\binom{3n-k-1}{2n-k}=\binom{3n-k-1}{n-1}$ is the coefficient of $x^{2n-k}$ in
$$ \sum_{h\geq 0}\binom{n-1+h}{n-1}x^h = \frac{1}{(1-x)^n} $$
It follows that for any $n>0$
$$\sum_{k=0}^{n}(-1)^k\binom{n}{k}\binom{3n-k-1}{n-1}=[x^{2n}]\frac{(1-x)^n}{(1-x)^n} = 0 $$
and:
$$\sum_{k=0}^{n-1}(-1)^k\binom{n}{k}\binom{3n-k-1}{n-1}= \color{red}{-(-1)^{n}\binom{n}{n}\binom{2n-1}{n-1}}. $$
Asymptotics can be derived from $\binom{2n}{n}\approx\frac{4^n}{\sqrt{\pi n}}.$

- 353,855
-
your generating functions approach yields a nice alternative to my "standard argument" (+1) – tired Sep 29 '16 at 15:49
Ok here we go:
$$ s(k,n)=(-1)^k\binom{n}{k}\binom{3n-k-1}{2n-k}= (-1)^k\binom{n}{k}\binom{-(-n)+ 2n-k-1}{2n-k}=\binom{n}{k}\binom{-n}{2n-k} $$
Furthermore in the form above it is clear that
$$ \sum_{n=0}^{2n}s(k,n)=0 \quad \color{red}{(1)} $$
Furthermore $$s(k,n)=0 \quad \text{for} \quad k>n \quad \color{blue}{(2)} $$ by definition of the Binomial coefficent.
Combining $\color{red}{(1)}$ and $\color{blue}{(2)}$ yields
$$ \sum_{n=0}^{n-1}s(k,n)=-s(n,n) $$
or
$$ \sum_{n=0}^{n-1}s(k,n)=-\binom{-n}{n} $$

- 12,325
-
(+1) To deal with it as a convolution is definitely the way to go. – Jack D'Aurizio Sep 29 '16 at 15:30
$$
\begin{align}
\sum_{k=0}^{n-1}(-1)^k\binom{n}{k}\binom{3n-k-1}{2n-k}
&=(-1)^{n+1}\binom{2n-1}{n}+\sum_{k=0}^n\binom{n}{k}\binom{-n}{2n-k}\tag{1}\\
&=(-1)^{n+1}\binom{2n-1}{n}+\binom{0}{2n}\tag{2}\\[4pt]
&=(-1)^{n+1}\binom{2n-1}{n}+[n=0]\tag{3}
\end{align}
$$
Explanation:
$(1)$: add and subtract the $k=n$ term
$\phantom{(1)\text{:}}$ use negative binomial coefficients to get $(-1)^k\binom{3n-k-1}{2n-k}=\binom{-n}{2n-k}$
$(2)$: Vandermonde's Identity
$(3)$: $\binom{0}{2n}=[n=0]$ using Iverson Brackets
I wrote a python script to compute the first few values of the sequence:
$n$: $f(n)$
2: -3
3: 10
4: -35
5: 126
6: -462
7: 1716
8: -6435
9: 24310
10: -92378
11: 352716
12: -1352078
13: 5200300
14: -20058300
15: 77558760
16: -300540195
17: 1166803110
18: -4537567650
19: 17672631900
I inputted the first 10 of those values into the OEIS and found that your sum appears to be:
$$(-1)^{n-1}\binom{2n-1}{n} = \sum_{k=0}^{n-1}(-1)^k\binom{n}{k}\binom{3n-k-1}{2n-k}$$
The LHS below should be much easier to analyze asymptotically (use Stirling's approximation). The two sequences match on at least the first 20 or so terms (all I checked). You may want to prove (induction perhaps) that they are the same--unless you believe/are convinced enough that 20+ term match implies they are the same already.

- 7,426