For the equation,
x-1/(x+1)(x-2)^2 = A/(x+1) + B/(x-2) + C/(x-2)^2
x-1 = A(x-2)^2 + B(x+1)(x-2) + C(x+1)
Using x = -1 gives A = -2/9
Using x = 2 gives C = 1/3
I am however unable to find the value of B
For the equation,
x-1/(x+1)(x-2)^2 = A/(x+1) + B/(x-2) + C/(x-2)^2
x-1 = A(x-2)^2 + B(x+1)(x-2) + C(x+1)
Using x = -1 gives A = -2/9
Using x = 2 gives C = 1/3
I am however unable to find the value of B
$$\frac { x-1 }{ \left( x+1 \right) { \left( x+2 \right) }^{ 2 } } =\frac { A }{ x+1 } +\frac { B }{ x+2 } +\frac { C }{ { \left( x+2 \right) }^{ 2 } } \\ x-1=A{ \left( x+2 \right) }^{ 2 }+B\left( x+1 \right) \left( x+2 \right) +C\left( x+1 \right) \\ x-1=\left( A+B \right) { x }^{ 2 }+\left( 4A+3B+C \right) x+4A+2B+C\\ \\ \\ \quad \begin{cases} A+B=0 \\ 4A+3B+C=1 \\ 4A+2B+C=-1 \end{cases}\Rightarrow \begin{cases} A=-B \\ -4B+3B+C=1 \\ -4B+2B+C=-1 \end{cases}\Rightarrow \begin{cases} -B+C=1 \\ -2B+C=-1 \end{cases}\Rightarrow \begin{cases} B=2 \\ A=-2 \\ C=3 \end{cases}\\ \\ \\ $$
As an alternative to solving a linear system, you may compute a couple of limits, since by assuming $$f(x)=\frac{x-1}{(x+1)(x+2)^2}=\frac{A}{x+1}+\frac{B}{x+2}+\frac{C}{(x+2)^2} \tag{1} $$ we have: $$ A=\lim_{x\to -1}(x+1)\,f(x) = \lim_{x\to -1}\frac{x-1}{(x+2)^2}=-2\tag{2} $$ $$ C=\lim_{x\to -2}(x+2)^2\,f(x) = \lim_{x\to -2}\frac{x-1}{x+1}=3\tag{3} $$ and $$ f(x)-\frac{A}{x+1}-\frac{C}{(x+2)^2} = \frac{2}{x+2} \tag{4} $$ (i.e. $B=2$) follows by direct computation.