Assume that $A \in M_{n}(F)$ is a matrix, such that for each $B \in M_n(F)$ we have $AB=BA$.
Prove that there exists $\lambda \in F$ such that $A=\lambda.I_n$
Note 1 : $F$ is a field.
Note 2 : This question should be solved without the use of vectors and determinants. Unfortunately, I don't know where to start ! I mean, in general form, When we want to prove that something exists, We should find it. But i don't know how !