Prove that, $$\sum\limits_{s=0}^\infty \frac{1}{(sn)!}=\frac{1}{n}\sum\limits_{r=0}^{n-1}\exp\left(\cos\frac{2r\pi}{n}\right)\cos\left(\sin\frac{2r\pi}{n}\right)$$ I don't have a real idea on how to start approaching this question, some hints and suggestions would be helpful.
3 Answers
It's $\sum\limits_{r=0}^{n-1} e^{i\frac{2\pi k}{n}r}=\frac{e^{i\frac{2\pi k}{n}n}-1}{e^{i\frac{2\pi k}{n}}-1}$ with $=0$ for $k\neq l\cdot n$ and $=n$ for $k=l\cdot n$, $l\in\mathbb{Z}$.
It follows $\sum\limits_{r=0}^{n-1} e^{e^{i\frac{2\pi}{n}r}}=\sum\limits_{k=0}^\infty\frac{1}{k!}\sum\limits_{r=0}^{n-1} e^{i\frac{2\pi k}{n}r}=n\sum\limits_{k=0}^\infty\frac{1}{(nk)!}$ and therefore the claim.

- 11,518
-
-
-
-
-
1Note that $$\sum\limits_{r=0}^{n-1} e^{i\frac{2\pi k}{n}r}=\begin{cases} n&,k=\ell n\\0&,k\ne \ell n\end{cases}$$for integer $\ell$. – Mark Viola Sep 28 '16 at 02:16
-
@Dr. MV : Thank you! (I have corrected - I have to be more precisely, I know :-)) – user90369 Sep 28 '16 at 08:33
-
$\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
The roots of $\ds{z^{n} - 1 = 0}$ are given by $\ds{\braces{\exp\pars{{2\pi r \over n}\,\ic}\ \mid\ r = 0,1,\ldots,n - 1}}$. Note that $\ds{{1 \over n}\sum_{r = 0}^{n - 1}\exp\pars{{2\pi rs \over n}\,\ic}}$ is equal to $\ds{1}$ whenever $\ds{n \mid s}$ and it vanishes out otherwise.
\begin{align} \color{#f00}{\sum_{s = 0}^{\infty}{1 \over \pars{sn}!}} & = \sum_{s = 0}^{\infty}{1 \over s!}\, \bracks{{1 \over n}\sum_{r = 0}^{n - 1}\exp\pars{{2\pi rs \over n}\,\ic}} = {1 \over n}\sum_{r = 0}^{n - 1}\sum_{s = 0}^{\infty}{1 \over s!}\, \bracks{\exp\pars{{2\pi r \over n}\,\ic}}^{s} \\[5mm] & = {1 \over n}\sum_{r = 0}^{n - 1}\exp\pars{\exp\pars{{2\pi r \over n}\,\ic}} = {1 \over n}\sum_{r = 0}^{n - 1}\exp\pars{\cos\pars{2\pi r \over n}} \exp\pars{\ic\sin\pars{2\pi r \over n}} \\[5mm] & = {1 \over n}\sum_{r = 0}^{n - 1}\exp\pars{\cos\pars{2\pi r \over n}}\bracks{% \cos\pars{\sin\pars{2\pi r \over n}} + \sin\pars{\sin\pars{2\pi r \over n}}\ic}\label{1}\tag{1} \end{align}
\begin{align} \color{#f00}{\sum_{s = 0}^{\infty}{1 \over \pars{sn}!}} & = \color{#f00}{{1 \over n}\sum_{r = 0}^{n - 1}\exp\pars{\cos\pars{2\pi r \over n}} \cos\pars{\sin\pars{2\pi r \over n}}} \end{align}
It's clear that the imaginary part of \eqref{1} vanishes out.

- 89,464
The expression on the left is the hypergeometric function with no upper and $n-1$ lower parameters of values $$ \frac1n, \frac2n \cdots \frac{n-1}{n} $$ at value $z = n^{-n}$.
I don't know that his is very helpful: The expression on the left has sorts of functions that are one-lower-index hypergeometrics (e.g., sin and cos) but it is not a simple convolution or anything.

- 41,743
-
I don't think the question involves anything on this level. But thanks for the help. – user51515 Sep 27 '16 at 20:30
observing that
$$ \sum_{s=0}^{\infty}\frac{1}{(4s)!}=\frac{1}2\sum_{s=0}^{\infty}\left(\frac{(-1)^s}{(2s)!}+\frac{1}{(2s)!}\right)=\frac{\cosh(1)+\cos(1)}{2} $$
which equals the rhs of OPs equation after some algebra. By the same scheme you may now tackle $n=8,16,32$ etc
– tired Sep 27 '16 at 20:43play around with the real part of the series
$$ \sum_{s=0}^{\infty}\frac{(-1)^{s/2}}{(2s)!} $$
– tired Sep 27 '16 at 20:53