It is given that $f(x)=|x|$ in $-\pi\le x\le \pi$ then the value of $$\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}$$ is equal to
a) $\Large \frac{\pi^2}{2}\qquad$ b) $\Large\frac{\pi^2}{4}\qquad$ c) $\Large\frac{\pi^2}{6}\qquad$ d) $\Large\frac{\pi^2}{8}$
I expanded the series $$\sum_{n=1}^{\infty}\frac{1}{(2n-1)^2}$$ $$=\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\ldots$$ Now, I don't have any clue how to proceed.