$\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation}
\sum_{i = 1}^{\infty}{2^{i - 1}\pars{i - 1}! \over
\prod_{j = 1}^{i}\pars{2j + 1}}:\ ?\label{1}\tag{1}
\end{equation}
\begin{align}
&\bbox[8px,border:0.1em groove navy]{{2^{i - 1}\pars{i - 1}! \over \prod_{j = 1}^{i}\pars{2j + 1}}} =
{2^{i - 1}\pars{i - 1}! \over 2^{i}\prod_{j = 1}^{i}\pars{j + 1/2}}
\\[5mm] = &\
{1 \over 2}\,{\pars{i - 1}! \over \pars{3/2}_{i}}
\qquad\pars{~\vphantom{\large A}\pars{a}_{n}:\ Pochhammer\ Symbol~}
\\[5mm] = &\
{1 \over 2}\,{\pars{i - 1}! \over \Gamma\pars{3/2 + i}/\Gamma\pars{3/2}} =
{1 \over 2}\,\
\underbrace{{\Gamma\pars{i}\Gamma\pars{3/2} \over \Gamma\pars{i + 3/2}}}
_{\ds{\mrm{B}\pars{i,3/2}}}\qquad
\pars{~\mrm{B}:\ Beta\ Function~}
\\ = &\,\,
\bbox[8px,border:0.1em groove navy]{{1 \over 2}
\int_{0}^{1}x^{i - 1}\pars{1 - x}^{1/2}\,\dd x}\label{2}\tag{2}
\end{align}
Note that
$\ds{\pars{a}_{n} = {\Gamma\pars{a + n} \over \Gamma\pars{a}}}$ where
$\ds{\Gamma}$ is the Gamma Function. By inserting the result \eqref{2} into the expression \eqref{1}:
\begin{align}
\color{#f00}{\sum_{i = 1}^{\infty}{2^{i - 1}\pars{i - 1}! \over
\prod_{j = 1}^{i}\pars{2j + 1}}} & =
\sum_{i = 1}^{\infty}{1 \over 2}
\int_{0}^{1}x^{i - 1}\pars{1 - x}^{1/2}\,\dd x =
{1 \over 2}\int_{0}^{1}{\dd x \over \root{1 - x}} = \color{#f00}{1}
\end{align}