Given that the rising and falling factorials are defined as
$$
\begin{array}{l}
n^{\,\overline {\,m\,} } = n\left( {n + 1} \right)\, \cdots \;\left( {n + m - 1} \right) \\
n^{\,\underline {\,m\,} } = n\left( {n - 1} \right)\, \cdots \;\left( {n - \left( {m + 1} \right)} \right) \\
n^{\,\underline {\, - \,m\,} } = \frac{1}{{\left( {n + m} \right)^{\,\underline {\,m\,} } }} = \frac{1}{{\left( {n + 1} \right)^{\,\overline {\,m\,} } }} \\
\end{array}
$$
where here we consider $n$ and $m$ integers,
and that it is not difficult to demonstrate that
$$
\begin{gathered}
\Delta _{\,n} \,n^{\,\underline {\,m\,} } = \left( {n + 1} \right)^{\,\underline {\,m\,} } - n^{\,\underline {\,m\,} } = m\,n^{\,\underline {\,m - 1\,} } \hfill \\
\sum\limits_{k = a}^{b - 1} {k^{\,\underline {\,m\,} } } \quad \left| {\;a < b} \right.\quad = \frac{1}
{{m + 1}}\left( {b^{\,\underline {\,m + 1\,} } - a^{\,\underline {\,m + 1\,} } } \right) \hfill \\
\end{gathered}
$$
Then
$$
\begin{gathered}
\sum\limits_{k = 1}^\infty {\frac{1}
{{k\left( {k + 1} \right)\left( {k + 2} \right)}}} = \sum\limits_{k = 0}^\infty {\frac{1}
{{\left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 3} \right)}}} = \sum\limits_{k = 0}^\infty {k^{\,\underline {\, - 3\,} } } = \mathop {\lim }\limits_{n\; \to \;\infty } \sum\limits_{k = 0}^{n - 1} {k^{\,\underline {\, - 3\,} } } = \mathop {\lim }\limits_{n\; \to \;\infty } \left( { - \frac{1}
{2}\left( {n^{\,\underline {\, - 2\,} } - 0^{\,\underline {\, - 2\,} } } \right)} \right) = \hfill \\
= \mathop {\lim }\limits_{n\; \to \;\infty } \left( { - \frac{1}
{2}\left( {\frac{1}
{{\left( {n + 1} \right)\left( {n + 2} \right)}} - \frac{1}
{{1 \cdot 2}}} \right)} \right) = \frac{1}
{4} \hfill \\
\end{gathered}
$$