This is an elaboration of what @Did commented on $n$-th match.
Fix $K>0$. Denote by $F_N^{(n)}$ the time of $n$-th match and set $F_N^{(0)}=0$.
For any fixed $n\geq 1$, we will find the joint CDF: For positive integers $k_1, \ldots , k_n $ with $0<k_1<k_2<\cdots <k_n\leq N$ and $k_n \leq K\sqrt N $,
$$
\begin{align}
P &(F_N^{(1)} =k_1, \ldots , F_N^{(n)} =k_n ) \\
&=\frac{k_1-1}N\prod_{i=1}^{k_1-2}\left(1-\frac{i}N\right) \frac{k_2-2}N\prod_{i=k_1-1}^{k_2-3}\left(1-\frac iN\right)\cdots \frac{k_n-n}N\prod_{i=k_{n-1}-(n-1) }^{k_n-(n+1)}\left(1-\frac iN\right)\\
&=\frac{k_1-1}N \cdots \frac{k_n-n}N \prod_{i=1}^{k_n-(n+1)}\left(1-\frac iN\right)\\
&=\frac{k_1-1}N \cdots \frac{k_n-n}N \exp\left( -\frac{(k_n-(n+1))^2}{2N}+O(N^{-2})\right).
\end{align}
$$
This gives
$$
P (F_N^{(1)} =k_1, \ldots , F_N^{(n)} =k_n ) = \frac{k_1-1}{\sqrt N } \cdots \frac{k_n- n}{\sqrt N}\exp\left( -\frac12 \left(\frac{ k_n-(n+1) }{\sqrt N}\right)^2+O(N^{-2})\right) \frac 1{\sqrt N^n} .
$$
Fix $0\leq x_1, \ldots , x_n\leq K$, and sum this up for $k_i\leq x_i \sqrt N$, we have as $N\rightarrow\infty$,
$$
P\left( \frac{F_N^{(1)}}{\sqrt N}\leq x_1, \ldots , \frac{F_N^{(n)}}{\sqrt N} \leq x_n\right) \rightarrow \int_{0\leq t_1\leq \cdots \leq t_n, \ \forall i, t_i\leq x_i} t_1 \cdots t_n \exp \left(-\frac12 t_n^2\right) dV
$$
(Think of this as summing the probabilities over the boxes with side length $1/\sqrt N$. The Dominated Convergence Theorem will suffice to justify this limit.)
Thus, the random vector $\left(\frac{F_N^{(1)}}{\sqrt N}, \ldots , \frac{F_N^{(n)}}{\sqrt N}\right)$ converges in distribution to the continuous random variable with PDF
$$
f(t_1,\ldots , t_n) = t_1 \cdots t_n \exp\left(-\frac 12 t_n^2\right) \mathbf{1}_{0\leq t_1 \leq \cdots \leq t_n}.
$$
The question was originally about the expectation in case with $n=1$. So, the above calculation suggests that the expectation can be similarly calculated as $N\rightarrow\infty$,
$$
\mathbf{E}\left(\frac{F_N^{(1)}}{\sqrt N} \right)\rightarrow \int_0^{\infty} t_1^2 \exp\left(-\frac12 t_1^2\right) dt_1 = \sqrt{\frac{\pi}2}.
$$
But, we need to treat the case with $k_1\neq O(\sqrt N)$. In the general case $k_n\neq O(\sqrt N)$. To do this, we use
$$
\log(1-x) \leq -x.
$$
Then for $K\sqrt N < k_n$,
$$
\frac{k_n}{\sqrt N}P (F_N^{(1)} =k_1, \ldots , F_N^{(n)} =k_n ) \leq \frac{k_1\cdots k_{n-1}k_n^2}{\sqrt N^{n+1}} \exp\left( -\frac12 \left(\frac{ k_n-n-1 }{\sqrt N}\right)^2\right)\frac1{\sqrt N^n}.
$$
Again by the Dominated Convergence Theorem, the right side after summing up for $0\leq k_1\leq \cdots \leq k_n$, becomes as $N\rightarrow\infty$,
$$
\int_K^{\infty} \int_0^{t_n} \cdots \int_0^{t_2} t_1\cdots t_{n-1}t_n^2 \exp\left(-\frac12 t_n^2 \right) dt_1\cdots dt_n.
$$
Note that this can be made arbitrarily small with sufficiently large $K$. This shows that the suggested calculation is valid. We now have
$$
\mathbf{E}\left(\frac{F_N^{(n)}}{\sqrt N}\right) \rightarrow \int_0^{\infty} \int_0^{t_n} \cdots \int_0^{t_2} t_1 \cdots t_{n-1}t_n^2 \exp\left(-\frac 12 t_n^2 \right) dt_1\cdots dt_n.
$$
This integral is in fact as @Did computed in the last comment to the question,
$$
\frac1{2^{n-1}(n-1)!} \int_0^{\infty} t_n^{2n} \exp\left(-\frac 12 t_n^2 \right) dt_n=\frac{(2n-1)!!}{2^{n-1}(n-1)!} \sqrt{\frac{\pi}2}\sim \sqrt{2n}.
$$