0

Why $\sqrt[3]{{2 + \sqrt 5 }} + \sqrt[3]{{2 - \sqrt 5 }}$ is a rational number?

Watson
  • 23,793
Under sky
  • 953
  • 1
    Related: https://math.stackexchange.com/questions/1416720, https://math.stackexchange.com/questions/1008169, https://math.stackexchange.com/questions/1180599/, https://math.stackexchange.com/questions/835955 – Watson Sep 25 '16 at 20:28
  • Related: https://math.stackexchange.com/questions/2404139 – Watson Nov 22 '18 at 09:56

1 Answers1

2

Let $$\sqrt[3]{{2 + \sqrt 5 }} + \sqrt[3]{{2 - \sqrt 5 }}=x$$ $$(a+b)^3=a^3+b^3+3ab(a+b)$$ Then $$2 + \sqrt 5+2 - \sqrt 5-3x=x^3$$ $$x^3+3x=4$$ $$x=1$$ $$\sqrt[3]{{2 + \sqrt 5 }} + \sqrt[3]{{2 - \sqrt 5 }}=1$$

Roman83
  • 17,884
  • 3
  • 26
  • 70