0

Is it possible to show the following formulas?

$$\int_0^{\infty } \frac{x^{s-1}}{\cos (x)-1} \, dx=-i^{-s} (2 \pi )^{s-1} \left(-s+(-i)^s i^s\right) \zeta (2-s) \csc \left(\frac{\pi s}{2}\right)$$ and $$\int_0^{\infty } \frac{x^{s-1} \sin (x)}{(\cos (x)-1)^2} \, dx=(-1)^{1-s} \left((-1)^s-1\right) \zeta (s-2) \csc \left(\frac{\pi s}{2}\right) \Gamma (s)$$

iamvegan
  • 2,552

0 Answers0