I come to know about this problem while reading What is the best way to define the diameter of the empty subset of a metric space? .I've already proved this but i wanted to prove $$ \operatorname{diam}(A\cup B)\le \operatorname{diam}A+\operatorname{diam}B+\operatorname{dist}(A,B) $$ in another way .But i got stuck in between.
Since ,$A \subseteq A\cup B$ & $B \subseteq A\cup B \implies $ $\operatorname{diam}{A} \le \operatorname{diam}{(A\cup B)}$ & $\operatorname{diam}{(B)} \le \operatorname{diam}{(A\cup B)} \implies\operatorname{diam}{(A\cup B)} \le \frac{\operatorname{diam}A+\operatorname{diam}B}{2} $.
Assuming that i'm on the right track,i tried to proceed further but not getting any idea.