The point is that same numbers may have different expansions in decimal (or other) notation. We can use two different tricks to show why $0.1999 \dots = 0.2000 \dots $:
1) Let $x=0.1999 \dots$, thus $10x=1.999 \dots$ and then $10x-x=1.8$. Solving this simple equation you get $x=0.2=0.1999 \dots$ by previous definition.
2) Write down the expansion of the number (decimal): $0.1999 \dots= (1)10^{-1}+(9) 10^{-2}+(9) 10^{-3}+(9)10^{-4}+ \dots +(9 )10^{-n} + \dots = \frac{1}{10} + 9 \sum_{n=2}^{+\infty} 10^{-n} = \frac{1}{10} + 9 \left( \frac{1}{1-\frac{1}{10}} - 1 - \frac{1}{10} \right) = \frac{2}{10} = 0.2 $