Let $\Gamma = SL_2(\mathbb{Z})$. Let $\mathfrak{F}$ be the set of binary quadratic forms over $\mathbb{Z}$. Let $f(x, y) = ax^2 + bxy + cy^2 \in \mathfrak{F}$. Let $\alpha = \left( \begin{array}{ccc} p & q \\ r & s \end{array} \right)$ be an element of $\Gamma$. We write $f^\alpha(x, y) = f(px + qy, rx + sy)$. Since $(f^\alpha)^\beta$ = $f^{\alpha\beta}$, $\Gamma$ acts on $\mathfrak{F}$. Let $f, g \in \mathfrak{F}$. If $f$ and $g$ belong to the same $\Gamma$-orbit, we say $f$ and $g$ are equivalent.
Let $f = ax^2 + bxy + cy^2 \in \mathfrak{F}$. We say $D = b^2 - 4ac$ is the discriminant of $f$. It is easy to see that $D \equiv 0$ (mod $4$) or $D \equiv 1$ (mod $4$). If $D$ is not a square integer and gcd($a, b, c) = 1$, we say $f$ is primitive. If $D < 0$ and $a > 0$, we say $f$ is positive definite.
We denote the set of positive definite primitive binary quadratic forms of discriminant $D$ by $\mathfrak{F}^+_0(D)$. By this question, $\mathfrak{F}^+_0(D)$ is $\Gamma$-invariant. We denote the set of $\Gamma$-orbits on $\mathfrak{F}^+_0(D)$ by $\mathfrak{F}^+_0(D)/\Gamma$.
Let $\mathcal{H} = \{z \in \mathbb{C}; Im(z) > 0\}$ be the upper half complex plane. Let $\alpha = \left( \begin{array}{ccc} p & q \\ r & s \end{array} \right)$ be an element of $\Gamma$. Let $z \in \mathcal{H}$. We write $$\alpha z = \frac{pz + q}{rz + s}$$
It is easy to see that $\alpha z \in \mathcal{H}$ and $\Gamma$ acts on $\mathcal{H}$ from left.
Let $\alpha \in \mathbb{C}$ be an algebraic number. If the minimal plynomial of $\alpha$ over $\mathbb{Q}$ has degree $2$, we say $\alpha$ is a quadratic number. Let $\alpha$ be a quadratic number. There exists the unique polynomial $ax^2 + bx + c \in \mathbb{Z}[x]$ such that $a > 0$ and gcd$(a, b, c) = 1$. $D = b^2 - 4ac$ is called the discriminant of $\alpha$.
Let $\alpha \in \mathcal{H}$ be a quadratic number. There exists the unique polynomial $ax^2 + bx + c \in \mathbb{Z}[x]$ such that $a > 0$ and gcd$(a, b, c) = 1$. Let $D = b^2 - 4ac$. Clearly $D < 0$ and $D$ is not a square integer. It is easy to see that $D \equiv 0$ (mod $4$) or $D \equiv 1$ (mod $4$). Conversly suppose $D$ is a negative non-square integer such that $D \equiv 0$ (mod $4$) or $D \equiv 1$ (mod $4$). Then there exists a quadratic number $\alpha \in \mathcal{H}$ whose discriminant is $D$. We denote by $\mathcal{H}(D)$ the set of quadratic numbers of discriminant $D$ in $\mathcal{H}$. It is easy to see that $\mathcal{H}(D)$ is $\Gamma$-invariant. Hence $\Gamma$ acts on $\mathcal{H}(D)$ from left. We denote the set of $\Gamma$-orbits on $\mathcal{H}(D)$ by $\mathcal{H}(D)/\Gamma$.
Let $f = ax^2 + bxy + cy^2 \in \mathfrak{F}^+_0(D)$. We denote $\phi(f) = (-b + \sqrt{D})/2a$, where $\sqrt{D} = i\sqrt{|D|}$. It is clear that $\phi(f) \in \mathcal{H}(D)$. Hence we get a map $\phi\colon \mathfrak{F}^+_0(D) \rightarrow \mathcal{H}(D)$.
My question Is the following proposition true? If yes, how do we prove it?
Proposition Let $D$ be a negative non-square integer such that $D \equiv 0$ (mod $4$) or $D \equiv 1$ (mod $4$). Then the following assertions hold.
(1) $\phi\colon \mathfrak{F}^+_0(D) \rightarrow \mathcal{H}(D)$ is a bijection.
(2) $\phi(f^\sigma) = \sigma^{-1}\phi(f)$ for $f \in \mathfrak{F}^+_0(D), \sigma \in \Gamma$.
Corollary $\phi$ induces a bijection $\mathfrak{F}^+_0(D)/\Gamma \rightarrow \mathcal{H}(D)/\Gamma$.