Which value for $a>0$ ist the smallest one such that $\displaystyle (1+\frac{1}{x})^{x+a}>e$ for all $x\geq 1$ ?
It seems to be $\displaystyle a=\frac{1}{2}$, but that’s not obviously.
Note: a proof with $a:=\frac{1}{2}$
It’s $\displaystyle \frac{e^{2x}-1}{x}<e^{2x}+1$ and therefore $x\coth x>1$ for $x\in\mathbb{R}\setminus\{0\}$.
With $\displaystyle \tilde{x} :=\ln(1+\frac{1}{x})$ one gets $\,\displaystyle e<\exp(\frac{\tilde{x}}{2} \coth \frac{\tilde{x} }{2})=(1+\frac{1}{x})^{x+\frac{1}{2}}\,$.