1

$$\sum_{i=1}^n (3i^2 +4) - \sum_{j=2}^{n+1} (3j^2 +1) $$

I thought I would use the distributive rule but the question stipulates that my answer should not include a summation sign...

  • For every term the two sums have in common, you get a $3$. Then there are two terms left over. This is why you don't need a summation sign – Matt Samuel Sep 14 '16 at 00:05

1 Answers1

2

Method 1:

$$\begin{align} \sum_{i=1}^n (3i^2 +4) - \sum_{j=2}^{n+1} (3j^2 +1) & =\sum_{i=1}^n (3i^2 +4) - \sum_{j=1}^n (3(j+1)^2 +1) \\ & = \sum_{i=1}^n (3i^2 +4) - \sum_{j=2}^{n+1} (3j^2+6j+4) \\ & = \sum_{i=1}^n \left[(3i^2 +4) - (3i^2+6i+4)\right] \\ & = \sum_{i=1}^n -6i \\ & = -6\cdot\frac{n(n+1)}2 \\ \sum_{i=1}^n (3i^2 +4) - \sum_{j=2}^{n+1} (3j^2 +1) & =-3n(n+1) \\ \end{align}$$


Method 2:

$$\begin{align} \sum_{i=1}^n (3i^2 +4) - \sum_{j=2}^{n+1} (3j^2 +1) & = 7+\sum_{i=2}^n (3i^2 +4) - \sum_{j=2}^n (3j^2 +1)-3(n+1)^2-1 \\ & =6-3(n+1)^2+\sum_{i=2}^n \left[(3i^2 +4) - (3i^2 +1)\right] \\ & =6-3(n+1)^2+\sum_{i=2}^n3 \\ & =6-3(n+1)^2+\underbrace{3+3+3+\dots+3}_{n-1} \\ & =6-3(n+1)^2+3(n-1) \\ & =-3n^2-3n \\ \sum_{i=1}^n (3i^2 +4) - \sum_{j=2}^{n+1} (3j^2 +1) & =-3n(n+1) \\ \end{align}$$